Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 26(11): 6578-6588, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33859357

RESUMO

Autism spectrum disorder (ASD) is often signaled by atypical cries during infancy. Copy number variants (CNVs) provide genetically identifiable cases of ASD, but how early atypical cries predict a later onset of ASD among CNV carriers is not understood in humans. Genetic mouse models of CNVs have provided a reliable tool to experimentally isolate the impact of CNVs and identify early predictors for later abnormalities in behaviors relevant to ASD. However, many technical issues have confounded the phenotypic characterization of such mouse models, including systematically biased genetic backgrounds and weak or absent behavioral phenotypes. To address these issues, we developed a coisogenic mouse model of human proximal 16p11.2 hemizygous deletion and applied computational approaches to identify hidden variables within neonatal vocalizations that have predictive power for postpubertal dimensions relevant to ASD. After variables of neonatal vocalizations were selected by least absolute shrinkage and selection operator (Lasso), random forest, and Markov model, regression models were constructed to predict postpubertal dimensions relevant to ASD. While the average scores of many standard behavioral assays designed to model dimensions did not differentiate a model of 16p11.2 hemizygous deletion and wild-type littermates, specific call types and call sequences of neonatal vocalizations predicted individual variability of postpubertal reciprocal social interaction and olfactory responses to a social cue in a genotype-specific manner. Deep-phenotyping and computational analyses identified hidden variables within neonatal social communication that are predictive of postpubertal behaviors.


Assuntos
Transtorno do Espectro Autista , Animais , Transtorno do Espectro Autista/genética , Deleção Cromossômica , Variações do Número de Cópias de DNA/genética , Modelos Animais de Doenças , Camundongos , Comportamento Social
2.
J Cell Biol ; 205(1): 21-31, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24733584

RESUMO

Most chemical neurotransmission occurs through Ca(2+)-dependent evoked or spontaneous vesicle exocytosis. In both cases, Ca(2+) sensing is thought to occur shortly before exocytosis. In this paper, we provide evidence that the Ca(2+) dependence of spontaneous vesicle release may partly result from an earlier requirement of Ca(2+) for the assembly of soluble N-ethylmaleimide-sensitive fusion attachment protein receptor (SNARE) complexes. We show that the neuronal vacuolar-type H(+)-adenosine triphosphatase V0 subunit a1 (V100) can regulate the formation of SNARE complexes in a Ca(2+)-Calmodulin (CaM)-dependent manner. Ca(2+)-CaM regulation of V100 is not required for vesicle acidification. Specific disruption of the Ca(2+)-dependent regulation of V100 by CaM led to a >90% loss of spontaneous release but only had a mild effect on evoked release at Drosophila melanogaster embryo neuromuscular junctions. Our data suggest that Ca(2+)-CaM regulation of V100 may control SNARE complex assembly for a subset of synaptic vesicles that sustain spontaneous release.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Junção Neuromuscular/enzimologia , Proteínas Qa-SNARE/metabolismo , Transmissão Sináptica , Vesículas Sinápticas/enzimologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Estimulação Elétrica , Concentração de Íons de Hidrogênio , Lisossomos/enzimologia , Complexos Multiproteicos , Ligação Proteica , Subunidades Proteicas , Proteínas Qa-SNARE/genética , Fatores de Tempo , ATPases Vacuolares Próton-Translocadoras/genética
3.
J Neurophysiol ; 102(2): 875-85, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19474177

RESUMO

Drosophila melanogaster exhibits a robust escape response to objects approaching on a collision course. Although a pair of large command interneurons called the giant fibers (GFs) have been postulated to trigger such behaviors, their role has not been directly demonstrated. Here, we show that escape from visual stimuli like those generated by approaching predators does not rely on the activation of the GFs and consists of a more complex and less stereotyped motor sequence than that evoked by the GFs. Instead, the timing of escape is tightly correlated with the activity of previously undescribed descending interneurons that signal a threshold angular size of the approaching object. The activity pattern of these interneurons shares features with those of visual escape circuits of several species, including pigeons, frogs, and locusts, and may therefore have evolved under similar constraints. These results show that visually evoked escapes in Drosophila can rely on at least two descending neuronal pathways: the GFs and the novel pathway we characterize electrophysiologically. These pathways exhibit very different patterns of sensory activity and are associated with two distinct motor programs.


Assuntos
Drosophila melanogaster/fisiologia , Interneurônios/fisiologia , Neurônios/fisiologia , Percepção Visual , Potenciais de Ação , Animais , Animais Geneticamente Modificados , Fenômenos Biomecânicos , Proteínas de Drosophila/genética , Reação de Fuga , Iluminação , Microeletrodos , Músculos/fisiologia , Mutação , Vias Neurais/fisiologia , Estimulação Luminosa , Desempenho Psicomotor , Receptores Nicotínicos/genética
4.
PLoS Biol ; 4(3): e63, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16494528

RESUMO

Acetylcholine is the major excitatory neurotransmitter in the central nervous system of insects. Mutant analysis of the Dalpha7 nicotinic acetylcholine receptor (nAChR) of Drosophila shows that it is required for the giant fiber-mediated escape behavior. The Dalpha7 protein is enriched in the dendrites of the giant fiber, and electrophysiological analysis of the giant fiber circuit showed that sensory input to the giant fiber is disrupted, as is transmission at an identified cholinergic synapse between the peripherally synapsing interneuron and the dorsal lateral muscle motor neuron. Moreover, we found that gfA1, a mutation identified in a screen for giant fiber defects more than twenty years ago, is an allele of Dalpha7. Therefore, a combination of behavioral, electrophysiological, anatomical, and genetic data indicate an essential role for the Dalpha7 nAChR in giant fiber-mediated escape in Drosophila.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Reação de Fuga/fisiologia , Receptores Nicotínicos/metabolismo , Alelos , Animais , Clonagem Molecular , DNA Complementar/genética , Dendritos/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Eletrofisiologia , Regulação da Expressão Gênica , Genoma de Inseto/genética , Proteína Glial Fibrilar Ácida/química , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Modelos Moleculares , Mutação/genética , Estrutura Quaternária de Proteína , Receptores Nicotínicos/genética , Sinapses/genética , Sinapses/metabolismo
5.
Cell ; 121(4): 607-620, 2005 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-15907473

RESUMO

The V(0) complex forms the proteolipid pore of an ATPase that acidifies vesicles. In addition, an independent function in membrane fusion has been proposed largely based on yeast vacuolar fusion experiments. We have isolated mutations in the largest V(0) component vha100-1 in flies in an unbiased genetic screen for synaptic malfunction. The protein is only required in neurons, colocalizes with markers for synaptic vesicles as well as active zones, and interacts with t-SNAREs. Loss of vha100-1 leads to vesicle accumulation in synaptic terminals, suggesting a deficit in release. The amplitude of spontaneous release events and release with hypertonic stimulation indicate normal levels of neurotransmitter loading, yet mutant embryos display severe defects in evoked synaptic transmission and FM1-43 uptake. Our data suggest that Vha100-1 functions downstream of SNAREs in synaptic vesicle fusion.


Assuntos
Drosophila melanogaster/metabolismo , Exocitose/fisiologia , Fusão de Membrana/fisiologia , Membranas Sinápticas/metabolismo , Vesículas Sinápticas/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Drosophila melanogaster/ultraestrutura , Embrião não Mamífero/metabolismo , Embrião não Mamífero/ultraestrutura , Anormalidades do Olho/genética , Soluções Hipertônicas/farmacologia , Microscopia Eletrônica , Mutação/genética , Células Fotorreceptoras de Invertebrados/anormalidades , Células Fotorreceptoras de Invertebrados/ultraestrutura , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Compostos de Piridínio/farmacocinética , Compostos de Amônio Quaternário/farmacocinética , Proteínas SNARE , Membranas Sinápticas/ultraestrutura , Transmissão Sináptica/genética , Vesículas Sinápticas/ultraestrutura , ATPases Vacuolares Próton-Translocadoras/genética , Proteínas de Transporte Vesicular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...